SHORT

Synthesis of α, β-Unsaturated Ketones on the Basis of Bicyclo[3.3.1]nonane-2,6-dione

A. A. Pimenov, N. V. Makarova, M. N. Zemtsova, and I. K. Moiseev
Samara State Technical University, ul. Galaktionovskaya 141, Samara, 443010 Russia
e-mail: moiseev@dp.sstu.samara.ru
Nayanova Samara Municipal University, Samara, Russia

Received October 11, 2000
α, β-Unsaturated ketones are widely used in organic chemistry for preparation of both aliphatic [1] and a large number of heterocyclic compounds [2]. Kozlov et al. [3] reported on the synthesis of unsaturated ketones by the Claisen-Schmidt reaction of methyl 1 -adamantyl ketone. We extended this procedure to (1-adamantyl)acetone and obtained 4-(1-adamantyl)1 -R-1-buten-3-ones [4]. In continuation of our studies on the synthesis of cage-like unsaturated ketones, we examined reactions of bicyclo[3.3.1]nonane-2,6dione (I) with aromatic and heterocyclic aldehydes: benzaldehyde, 4-nitrobenzaldehyde, 2-furaldehyde, and 2 -thiophenecarbaldehyde. As a result, the corresponding 3,7-bis(arylmethylene)bicyclo[3.3.1]nonane-2,6-diones II were obtained.

The reactions were carried out in ethanol at 60 $65^{\circ} \mathrm{C}$ in the presence of potassium hydroxide; the ketone I-to-aldehyde ratio was $1: 2$. The reactant ratio did not affect the reaction direction: only bis(aryl-
methylene) derivatives II were obtained regardless of whether the reactant ratio was $1: 1$ or $1: 2$. We failed to isolate monosubstituted ketones.

3,7-Dibenzylidenebicyclo[3.3.1]nonane-2,6-dione (IIa). A mixture of 1.54 g (10 mmol) of bicyclo-[3.3.1]nonane-2,6-dione (I), 11 mmol of benzaldehyde, and 10 ml of ethanol was heated to $60-65^{\circ} \mathrm{C}$, and a solution of $0.56 \mathrm{~g}(10 \mathrm{mmol})$ of potassium hydroxide in 10 ml of ethanol, heated to $60-65^{\circ} \mathrm{C}$, was added. After 10 min , the mixture was diluted with 100 ml of water and was left to stand for 24 h . The precipitate was filtered off, washed with water, dried, and recrystallized from acetic acid. Yield 51%. $\mathrm{mp} 194-196^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 2900,2850$ $\left(\mathrm{CH}_{2}\right) ; 1695(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum (300 MHz , DMSO- d_{6}), $\delta, \mathrm{ppm}: 2.50 \mathrm{~m}\left(6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.90 \mathrm{~m}(2 \mathrm{H}$, $2 \mathrm{CH}), 6.50 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=), 6.70-7.30 \mathrm{~m}\left(10 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

3,7-Bis(\boldsymbol{p}-nitrobenzylidene)bicyclo[3.3.1]nonane-2,6-dione (IIb) was synthesized in a similar way. Yield 76%. mp $267-269^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}$: 2900, $2850\left(\mathrm{CH}_{2}\right) ; 1680(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right), \delta, \mathrm{ppm}: 2.50 \mathrm{~m}\left(6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, $3.55 \mathrm{~m}(2 \mathrm{H}, 2 \mathrm{CH}), 7.38 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=), 7.70-8.25 \mathrm{~m}$ $\left(8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right)$.

3,7-Difurfurylidenebicyclo[3.3.1]nonane-2,6-dione (IIc) was synthesized in a similar way. Yield 62%. mp $153-155^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{v}, \mathrm{cm}^{-1}$: 2900, $2850\left(\mathrm{CH}_{2}\right) ; 1685(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right), \delta, \mathrm{ppm}: 2.30 \mathrm{~m}\left(6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, $2.50 \mathrm{~m}(2 \mathrm{H}, 2 \mathrm{CH}), 6.70 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=), 7.18-7.95 \mathrm{~m}$ ($6 \mathrm{H}, \mathrm{CH}$, furan).

3,7-Dithenylidenebicyclo[3.3.1]nonane-2,6-dione (IId) was synthesized in a similar way. Yield 56%.
$\mathrm{mp} 247-249^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 2900,2850$ $\left(\mathrm{CH}_{2}\right) ; 1670(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum $(300 \mathrm{MHz}$, DMSO- d_{6}), δ, ppm: $2.45 \mathrm{~m}\left(6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.05 \mathrm{~m}$ $(2 \mathrm{H}, 2 \mathrm{CH}), 7.75 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=), 7.20-7.90 \mathrm{~m}(6 \mathrm{H}, \mathrm{CH}$, thiophene).

REFERENCES

1. Dhar, D.N., The Chemistry of Chalcones and Related Compounds, New York: Wiley, 1981.
2. Desenko, S.M. and Orlov, V.D., Azageterotsikly na osnove aromaticheskikh nepredel'nykh ketonov (Aza Heterocycles Based on Aromatic Unsaturated Ketones), Khar'kov: Folio, 1998.
3. Kozlov, N.G., Skanovskii, E.D., and Korotyshova, G.P., Russ. J. Gen. Chem., 1997, vol. 67, no. 10, pp. 1602-1605.
4. Moiseev, I.K., Zemtsova, M.N., Makarova, N.V., and Pimenov, A.A., Russ. J. Org. Chem., 2000, vol. 36, no. 3, pp. 436-437.
